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CHAPTER 14
Design of Blocks for Oracles and Quantum Computers using Permutative Circuits
14.1.    Introduction
In this chapter we show how the quantum circuit synthesis methods introduced in previous chapters can be used to design useful blocks for reversible and quantum oracles. We design binary and multiple-valued-input circuits. In some cases, we use synthesis methods developed by us in previous chapters. We will introduce also less formalized methods that are however useful in hand synthesis of quantum oracles. This chapter is a link between the methods of circuit design (chapters 2, 3, 7) with the methods of algorithms (oracles) design (chapters 9 - 15). Below, the quantum blocks are presented in the order that emphasizes their mutual connections, rather than in groups of circuits of the same type or application. 
14.2.    Simple Adder Circuits.
The Quantum implementation for half-adder is shown in Figure 14.2.1a. Circuit for full-adder is shown in Figure 14.2.1b. The circuit from Figure 14.2.1a can be obtained using any method from chapters 3, 4 and the circuit from Figure 14.2.1b can be obtained by the method from chapter 3 that creates sequentially outputs of a multi-output function converting at the same time the irreversible function to a reversible function in the process.
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Figure 14.2.1: Quantum Adders. (a) Half-adder HA  realized using Toffoli and Feynman gates, (b) Full adder FA realized using two Toffol gates, one Feynman and one inverter gates.  Sum = a 
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The synthesis process of the half-adder is illustrated in Figure 14.2.1.c – g. Figure 14.2.1c has KMaps of sum and carry functions. The Carry output is realized first from left in the array because it requires an ancilla bit anyway as an irreversible function and it does not affect the state of inputs. Thus, after the realization of carry, the circuit looks as in Figure 14.2.1d. Now, Figure 14.2.1e presents a truth table for the new synthesis problem with inputs 
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 and output sum. When converted to a KMap (Figure 14.2.1f) we can observe don’t care’s. This is one of the reasons that we consider don’t cares in this thesis, and especially in chapters 2 and 3. The function from Figure 14.2.1f is next realized as a linear function Sum = 
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 in Figure 14.2.1g which completes the synthesis process of the circuit from Figure 14.2.1a. After realizing first the carry output as 
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(Figure 14.2.1d) the outputs of the gate become new variables 
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 for the next stages of synthesis. Thus the circuit from Figure 14.2.1a has been realized.
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 Figure 14.2.1: (c)  KMaps for sum and carry of the half-adder, (d) creation of intermediate variables 
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created in step d, (f) The incompletely specified KMap for SUM (
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), (g) Realization of  SUM  from incomplete specification.
Based on the full-adder and half adder, we can build by hand  a block scheme of an adder that adds three 2-bit numbers as shown in Figure 14.2.2. This will lead to a circuit with k ancilla bits. The full adder circuit can be realized also directly from KMap by any reversible synthesis method that converts a non-reversible function to a reversible function. In Figure 14.2.2 the ancilla bits initialized to 0 (as in Figure 14.2.1a) are not shown. It is easy to rewrite Figure 14.2.2 to a quantum array (Figure 14.2.2b), so from now on we will not show details of lower stages of design for adder blocks of quantum oracles. 
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Figure 14.2.2. Block diagram of an adder of three 2-bit numbers. (a) a block diagram, (b) a corresponding quantum array.
Design of quantum adders is a well-developed area of research with relatively many publications available [Khan05a, Li06]. We will however not go deeper into adders design in this book  as our concern is on one hand on the automated design of general-purpose reversible functions from irreversible specifications and on the other hand, on the specific methods for the design of oracles.
14.3.    “COUNT ONES” Circuit.
The “Count Ones” circuit is one of the most useful circuits in oracle building. It will appear in many oracles from this dissertation, and also in some other oracles that we   built but that are not included into the thesis.  This circuit is always a part of the cost function calculation block of the oracle. It occurs in nearly all oracles that we have already built for problems in which the solution cost is being optimized. This circuit is useful in every case when one wants to calculate the number of bits “one” in a binary vector, it is thus used in many cost function blocks being parts of oracles. There are many methods to design this block. The simplest method is to create a specification of the block as a truth table, KMap or netlist and next use respective software from previous chapters or other software that converts irreversible logic specification to reversible logic and next designs a quantum array. Another approach is hierarchical. The Hierarchical design style we found useful in many cases while designing oracles. In the hierarchical approach the circuit is composed from smaller blocks, as shown in Figure 14.3.1. Finally, the “Count Ones” quantum array is shown in Figure 14.7.2 (left up). The circuit has two-levels. The first level consists of two full-adders and one half-adder which add 8-bit number in parallel and forms three 2-bit numbers. The second level is an adder that adds the three 2-bit values which are the result of the previous adder.

   
[image: image22.emf]FA FA

e

0

e

1

e

2

e

3

e

4

e

5

HA

e

6

e

7

3  2-bit Adder

s

0

c

0

s

1

c

1

s

2

c

2


Figure 14.3.1: Block “Count Ones” realized using binary Half-Adders and Full-Adders. The block at the bottom is the adder from Figure 14.2.2. Ancilla qubits are not shown.
The design approach simplifies the circuit design process and the number and complexity of gates, at the price of increasing the number of ancilla qubits.
Now we will show a systematic method for deriving the “Count Ones” circuit for three inputs. The point here is not only to derive this particular circuit but to show a method to synthesize any circuit specified as a truth table. In theory, this method can be used for any binary circuit presented in this book.

In order to derive the circuit for the “Count Ones” block, the first thing to do would be to draw the Karnaugh map. The design here is assuming that there are at most three “ones” in order to make the circuit simpler and more cost-effective. The better designs of “Count Ones” circuit were presented earlier, but the method here is the most general as it is based on a tabular representation of the function  (Figure 14.3.2) and uses the general purpose AND\EXOR synthesis.

[image: image23.emf]ab

01

11

10

00

2

0

1

1

2

3

0

2

1

1

c


Figure 14.3.2:  Karnaugh map for “Count Ones” circuit without binary encoding. The number in each cell corresponds to the number of input values “1” in its argument.
For instance, in the case of the graph coloring oracle, every variable a, b, c is 1 if it is representing a color. It is 0 otherwise. The circuit calculates the number of ones in the input. Figure 14.3.3 is the most basic form that our notation can take. It simply takes all possible values of the three “colors”, and then has the amount of one’s in each value listed in each cell. In order to convert the Karnaugh map into a form that can be used to design the circuit, we must convert it to a binary encoding (Figure 14.3.3).
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Figure 14.3.3: Karnaugh map for “Count  Ones” obtained from Figure 14.3.2 after binary encoding.
The cells in the Karnaugh map have two-bit values within them, as there are up to three ones (colors). Again, we must separate this KMap into two one-bit Karnaugh maps to derive the circuit for each output bit O1 and O2. The separated KMaps are shown in Figures 14.3.4 and 14.3.5.
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Figure 14.3.4: Karnaugh map for “Count  Ones”qubit O1.
The product groups in Figure 14.3.4 for an AND/EXOR circuit is:
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This equation is our familiar majority function equation for which we found very efficient solutions using CV/CV†/CNOT gates in previous chapters, especially in chapters 3 and 4.
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Figure 14.3.6: Karnaugh map for “Count  Ones” qubit O2. ​

The product groups in Figure 14.3.5 are
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This is a linear circuit, thus it is also inexpensive. The combined logic functions from Figure 14.3.4 and 14.3.5 each form their own quantum circuit, illustrated in Figure 14.3.6. We can observe that it is the familiar Quantum Adder that we have already synthesized  (more optimally) in Figure 14.2.1b.
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Figure 14.3.6: Separate Quantum Arrays  for the “Count  Ones” circuit from Figure 14.3.3.
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14.4.    Binary Equality, Inequality and Order Comparators.
Figure 14.4.1 is the Karnaugh map (inverted) of the binary equality comparator that finds many applications as the decision block in oracles.
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Figure 14.4.1: Inverted Karnaugh map of the  C block, the binary equality/inequality comparator. This KMap realizes the Equality Comparator. Its negation realizes the Inequality Comparator.     
The function realized by the KMap from Figure 14.4.1 can be written as follows:
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Where 
[image: image34.wmf]Q

denotes the equivalence operator (equivalence is a negation of EXOR).
Figure 14.4.2 is the classical schematic of this comparator for two bits in each of the compared inputs. It uses 2 EXNOR gates (equivalence gates) leading to a NAND gate (as the KMap in Figure 14.4.1 was inverted). Extension of this circuit for arbitrary length n of words A = (a0, a1, …, an) and B = (b0, b1,…, bn) is trivial and can be found using our synthesis methods or by hand as a bit-by-bit extension of the circuit from Figure 14.4.2.


[image: image35.emf]a

0

a

1

b

0

b

1



(a

0 

a

1

)

(b

0 

b

1

)

(a

0 

a

1

)

=

(b

0 

b

1

)


Figure 14.4.2: Classical representation of the equality/inequality  comparator (C block) for two 2-qubit words.
Now we use the Toffoli gate to implement the circuit, creating the quantum comparator (Figure 14.4.3). The Toffoli is a universal gate, and can be used to represent any basic classical function in a reversible manner. Also note the presence of the EXOR function (in Feynman gate) and the NOT gates (the inverters). Observe the NAND realized by initializing the bottom qubit in Figure 14.4.3 to the value of “1”.
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Figure 14.4.3: Quantum Inequality Comparator (C Block) for 2 qubits in a word using one ancilla qubit. This circuit can be easily extended to any length of words (a0 …. an) and (b0 …. bn). Inputs b0 and b1 are not restored at outputs as this circuit is not an oracle.
Observation.

The comparator finds, for instance, application in graph coloring. All the graph’s adjacent node color encodings should go through such comparators.  Since each node represents a country then any nodes connected to it (adjacent countries) should not use the same color. The comparator is designed to test whether any single node-node connection violates the coloring rules. If it does, it will come out logic 0, as can be inferred from the Karnaugh map. This 0 will affect the other comparators’ result since the output from every comparator is ANDed together to provide the answer for the question “does this entire graph coloring configuration obey the coloring rules?”

Comparators are very useful blocks for many other oracles as well. There are many types of comparators that calculate values of various relations such as >, (, (  or (, but in this section we   was first concerned with the simple equality (=) comparator which finds most applications in oracles. We designed comparators of various types for quantum oracles. Here we will build the “Greater Than” Comparator using the hierarchical equation method. We first derive the Boolean function for comparator that compares two 4-bit numbers (
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), then we need to move to the next significant bit. This can be carried out until the Least Significant Bit (MSB) is reached. Based on that, we can write the Boolean function as follows:
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Based on the above formula, we can directly draw the quantum array presented in Figure 14.4.4. The equations are given in some points of the circuit to help the reader analyse this design. Observe that the number of ancilla qubits was reduced to just one. This design, extended to more qubits, is used in many oracles to compare costs of potential solutions with bounds (threshold values). For instance, it is used in Graph Coloring Optimizing Oracle in Chapter 11. Observe that another method to synthesize the circuit would be based on automated design starting from a truth table.
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Figure 14.4.4:  Binary Implementation of Quantum Comparator for 2 words of length 4. Please observe the Toffoli gate with 5 inputs in AND. This 6×6 Toffoli gate is expensive and its internal realization is not shown in Figure 14.4.4. This design requires only one ancilla qubit.
14.7.    The Binary Compressor Tree.
The binary Compressor Tree idea is used to generate the “Count Ones” circuit from section 14.3 using a more powerful synthesis method. There are two tasks to be accomplished by the “Compressor Tree” block:

1) To count the number of ones in the input data (this can be for instance the number of non-zero spectral coefficients in the FPRM minimization problem (see Chapter 13). 

2) To compare the number of ones with the threshold value. If the number of ones in the coefficients is less than the threshold value, the circuit will output a one, otherwise the circuit produces a zero.

The “Count Ones” function can be accomplished using a tree of half-adders and full-adders and is also known in the arithmetic design community as the 10:4 compressor. The quantum implementation for the half-adder is shown in Figure 14.2.1a and the full-adder is shown in Figure 14.2.1b. The 8:4 compressor based on a tree of full-adders and half adders is shown in Figure 14.7.1. The compressor circuit includes two levels, with the first level consisting of two full-adders and one half-adder which add two 3-bit values and one 2-bit value parallel and form three 2-bit numbers. The second level is an adder tree that compresses the 6-bit value from the first stage into a 4-bit value. The detailed implementation as a quantum array is shown in Figure 14.7.2 (in the leftmost box). We see here that the result S0S1S2S3 along with the threshold value b0b1b2b3 serve as the inputs to the comparator. 
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Figure 14.7.1: Block diagram of the 8:4 Compressor Tree. The binary FA and HA adder blocks were explained in section 14.2.   
We build the comparator as in section 14.4, we first derive the Boolean function for a comparator that compares two unsigned 4-bit numbers (
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), then we check the next significant digit. This can be carried out until the Least Significant bit (LSB) is reached. Based on that, we can write the Boolean function as the following:
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Based on the formula derived there, we design the quantum circuit as shown in Figure 14.7.2 (in the rightmost box at the bottom). The inverse circuits are just mirror reflections of their basic circuits, and thus the inverse butterfly is drawn by mirroring in inverse order all gates from the butterfly. This is because in binary reversible logic the generalized Toffoli gates, Toffoli gates, Feynman gates, Fredkin gates and NOT gates are their own inverses. 
Gates are not their own inverses in the ternary logic, but designing inverse circuits is also straightforward in ternary logic [Khan05a]. Let us observe that this circuit has 8 ancilla bits. In theory the number of ancilla bits can be reduced to one. 
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Figure 14.7.2: Binary Quantum Array for the  8:4 Compressor from Figure 14.7.1 and Comparator for 8-bit data (e0 , e1 , e2 , e3 , e4 , e5 , e6 , e7 ) and 4 bit data (b0 , b1 , b2 , b3 ).

14.9.    The Sorting / Absorbing Circuit.
The sorting/absorbing block exists in oracles when there is a need to convert the set with repeated elements to the set with non-repeated elements. This is an iterative algorithm, which works by exposing the data to a number of butterfly iterations of SAP (sorting/absorbing processor) blocks. The simplified design to sort/absorb four 3-bit numbers is presented in Figure 14.9.1. It can be used for instance in those variants of Graph Coloring algorithms that try to find the coloring with the minimum (chromatic number) number of colors (in the so-called optimizing oracle).
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Figure 14.9.1: Butterfly iterative circuit for sorting/absorbing to be used as a block in cost optimizing oracles.
Figure 14.9.1 presents an example of the circuit (algorithm) for four numbers. Here it is acting on the unsorted set of numbers 8, 8, 2 and 1. As one can see, repeated iterations end in the set being sorted from the smallest to the largest number, with repeating entries reduced to nulls (i.e. absorbed). Figure 14.9.2 is the diagram of the single SAP block with 3-bit inputs a and b, 3-bit outputs c and d, binary outputs z and v. In multiple-valued design the qudits a and b can be of radices higher than 2.
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Figure 14.9.2:  The symbolic schematics of the SAP processor with notation used for its inputs and outputs.
Each SAP block can sort two input numbers a and b such that the smaller one will be output from the output port c and larger one will be output from port d. If two inputs to SAP are equal, then one of them will become null/absorbed. However, here we run into a problem. In this quantum circuit, there cannot be a notation for an absorbed bit. Initially, all of the inputs in Grover algorithm are put through Hadamard gates. This means that for instance in the graph coloring problem the number of “colors” is always a power of 2. This does not affect the performance of the equality comparator; however, the Sorter/Absorber will be severely affected. Colors that should not exist (i.e. larger than worst case number of colors) would be sorted alongside colors that should exist, and thus decrease the efficiency. In order to compromise this problem, we   have added the tagged bits x, y, z and v. These tagged bits are bits that are attached to the color encodings. Those that have the tag value of 1 are colors. Those with tag 0 are colors that were absorbed in the SAP, and are considered nulls. After all color encodings pass through this “butterfly” sorter/absorber, the output will sort these color encoding from the “smallest” to the “largest” and the last qubits at the bottom  will be occupied with nulls.

The SAP involves the interaction between the tag inputs and the data inputs. The circuit for sorting/absorbing the tags can be represented as a series of maps (these are not standard Karnaugh maps). From these maps, we will derive the classical notation of the circuit and then convert it to the quantum form. The first map is a general map that denotes the outputs c, d, z, v given the state of word a compared to state of word b, as well as the states of the input tag signals x, y (Figure 14.9.3). The determination of whether a=b, a>b, or a<b is defined by multiplexers, which will be shown later.  We found these new maps that combine logic variables together with arithmetic predicates very useful in some oracle synthesis problems. 
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Figure 14.9.3: The map for cdzv the output signals c, d, z, v as the functions of their inputs x, y, and values of predicates ( a = b), (a > b), (a < b). This quantum map generalizes the input data from bits to words a, b  and is  thus a new concept in synthesis.

The Figure 14.9.3 map specifies the action of the SAP. In order to derive the circuitry, we have to separate the map from Figure 14.9.3 into 4 different maps:
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Figure 14.9.4: The KMap for c. Observe that c is in general a k-input word, not a  bit.  Columns ( a = b), ( a < b ) and ( a > b) are Boolean predicates with 2 k-bit arguments each. They are realized as comparators = , < , >, respectively. The design of the “equivalence” and “Greater Than” operators was already discussed. The detailed design is presented in section 14.10.   
Figure 14.9.5 below represents the classical circuit for a, b, c of k bits. Observe that c is equal to b if control of multiplexer is 1. This means that a>b and y=1 when x=0. 
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Figure 14.9.5: Classical circuit for qubit bus c of k  bit-width. This circuit was calculated from the KMap in Figure 14.9.4. For k = 1 the circuit can be easily directly converted to a quantum array.

[image: image68.emf]a=b

a<b a>b

xy

00

01

11

10

b

a

-

- -

-

- - -

-

-

-

d

            
Figure 14.9.6: The KMap for bus d of arbitrary width.
Figure 14.9.7 below presents the classical circuit for d. We assume here width k of signals a, b, c. So, strictly speaking it is not a circuit but a block diagram.
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Figure 14.9.7: The classical circuit for bus d for k width of  qudits  in data.
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Figure 14.9.8: The KMap for v.
Figure 14.9.9 below represents the classical circuit for  the tag qubit v.
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Figure 14.9.9: Classical circuit for the tag qubit  v. Words a and b are of width k.
From the classical circuit, we can derive our quantum circuit for finding v. This is given in  Figure 14.9.10.
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Figure 14.9.10: The quantum circuit for the tag qubit v. In this particular example words a and b have three qubits each.
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Figure 14.9.11: The KMap for z.                                              

Figure 14.9.12 below represents the classical circuit for z.
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Figure 14.9.12: Classical circuit for the tag qubit z

From the classical circuit, we can derive the quantum circuit for z (Figure 14.9.13). De Morgan’s Theorem was used.
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Figure 14.9.13: Quantum circuit for the tag qubit z.
What remains is to design the arbitrary comparators of width k using quantum arrays. This will be done in section 14.10.   
14.10.    The Iterative Comparator of  A = B, A > B and A < B.

To design an iterative circuit to compare the two numbers (for instance color encodings) a and b, we can use a state machine approach. Bit streams a and b may contain k bits each (are buses of width k). By putting ai bi into the state diagram, depending on their value, the next state Q1+ and Q2+ will change. The comparison will act on the qubits of the inputs from the LSB (least significant bit) to the MSB (most significant bit).  The last state of Q1 and Q2 represent the results of this two-bit stream comparison. 
We used a Karnaugh map to define the circuit. In our case, we used 2-digit bitstring (encoding) representing a > b, b > a, and a = b. Notice that since there are only 3 different outputs, there’s “too much” room when we simplify the Karnaugh map, so an entire row will be turned into “don’t cares” which can be changed to suit the circuit. The encoding for a=b was 00, a > b: 10 and a < b: 01. Since 11 has no corresponding encoding value, its row is struck off as a “don’t care”. 

We designed the structure of the Karnaugh map (pre-encoding) based on a state machine that defined how the different states a > b, a < b, and a = b are changed depending on whether the entry is 00, 01, 11, or 10. Those values are placed at the top (columns) of the Karnaugh map, and the encodings were placed as the rows. The state machine told how each of the states would react to an entry, and so we copied it down onto the Karnaugh map. We then simplified it into 2 bit encodings, and then 1-bit values (00s and 01’s were considered 0’s, see above for what they represent). Figure 14.10.1 presents the Finite State Machine diagram.
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Figure 14.10.1: State machine for predicates.
We rewrite the graph from Figure 14.10.1 into KMap form, as shown in Figure 14.10.2.
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Figure 14.10.2: The Karnaugh map representation of the state machine graph from Figure 14.10.1.

Using the state encoding of a = b, a > b, and a < b as at the left of Figure 14.10.2, we transform the Figure 14.10.2 into the usable standard form Figure 14.10.3.
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Figure 14.10.3: The Karnaugh map after state encoding as shown in left. We found this to be the best encoding by exhaustive search.
We can separate the map from Figure 14.10.3 to two maps to represent each output bit separately.
Figure 14.10.5 represents the Karnaugh map and the  groups for ESOP minimization for Q1+ .
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Figure 14.10.4: Karnaugh map for output Q1+. The groups are for ESOP synthesis.
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Figure 14.10.5 illustrates the Karnaugh map and  ESOP groups for  output Q2+.
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Figure 14.10.5:  Karnaugh map for Q2+ .

From Figure 14.10.5 we obtain ESOP expression
Q2+ = Q2
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Figure 14.10.6 illustrates the final quantum circuit for qubits 
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 of the iterative circuit. Observe the SWAP gates added at the right to have Q1+  be in the same qubit (layer) as Q1, and Q2+  be in the same qubit as Q1 .
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Figure 14.10.6: Circuit for Q1+Q2+. Please observe garbage qubits G, and the use of SWAP gates to provide the outputs Qi+ in the same qubit from top as the next expected qubit Qi+. This is a requirement of iterative circuit.
The Qn values will continually change as the values are “read” from the least significant bit to the greatest significant bit. After no more bits remain to be read, the values of Qn will be compared to receive the judgment of a compared to b. The iterative nature is shown in Figure 14.10.7. 
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Figure 14.10.7: The iterative action of the n-bit comparator circuit. Ancilla bits are not shown.
4.11.    Arithmetic Reversible Blocks: Adders, Subtractors and Kernels.
It is obvious from theory in Chapter 3 that every arithmetic, counting, encoding, predicate transform or other irreversible function can be realized as a quantum circuit by adding some number of ancilla bits. The number of ancilla bits may be however excessive in some designs so we always want to find a way to reduce the number of ancilla bits. Partially it can be done by good design using automated tools. This way the number of ancilla bits can be reduced to at most m where m is the number of outputs. However, in some problems one can invent another architecture on high level, an architecture that uses reversible high level blocks.

Let us discuss one example. Suppose that we want to design a k-bit adder of two numbers as in Figure 14.11.1a. Obviously this circuit is not reversible. But we can make it reversible by repeating one of its K-word-width input words as in Figure 14.11.1b.
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Figure 14.11.1: (a) Irreversible modulo adder, (b) the same adder made reversible by replicating its k-width input A to output. This is, in essence, the same trick as one applied to design the Feynman gate.
Using reversibility on word level we obtain the following equations.
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Which shows that logically the inputs can be derived in a unique way from the outputs. 

However in some problems it is better to have another method to achieve reversibility. For instance design from Figure 14.11.2 is better when one uses the A – B block as well.
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Figure 14.11.2: The reversible adder/subtractor used in Hadamard/Walsh butterflies and its notations.
This design (known as a Kernel of Walsh Transform) is used in a reversible design of Walsh Transform based on Butterflies, see Figure 14.7.4.   
Before we discuss Walsh Butterfly in more detail let us observe that the Kernel block from Figure 14.11.2 is reversible, as results from solving equations in Equation 14.7.1.   
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                                         Equation 14.11.1
Observe that in some technologies (such as  reversible CMOS  Optical and quantum) the logical reversibility of the circuit corresponds also to its physical reversibility, which means that by providing input data P, Q to outputs  of the circuit we will obtain the output data A, B (as in Equation 14.11.1) at the inputs of the circuit. The role of inputs and outputs can be thus completely reserved. This circuit behavior is something entirely impossible in standard CMOS circuits as used now in VLSI.
The Walsh transform is described by a Kernel matrix 
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 ( we omit coefficients for simplification). By using Kronecker product (tensor product) we   can build the matrix for two variables (variables corresponds to columns of kernel blocks in butterflies) and next the Butterfly Circuit using standard DSP methods [Stankovic97,   Miller02, Li06]. This Butterfly circuit is shown in Figure 14.7.3.   
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Figure 14.11.3: The butterfly of 4 kernels for 2 variables. It would require SWAP gates in quantum realization. 

The schematic diagram from Figure 14.11.3 can be rewritten to the more detailed block diagram from Figure 14.7.4.   
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Figure 14.11.4: The butterfly from Figure 14.11.3 in another notation. This diagram shows the buses of width k, identical blocks for realization of kernels and the necessity of SWAP gates for crossing buses with width k.
Next, the circuit from Figure 14.11.4 can be rewritten to the even more detailed diagram from Figure 14.11.5 that explains the role of the adder and subtractor blocks inside the Kernels.

The Truth table of the Kernel ( the + and – operations are mod4 ) is given in Table 14.7.1.   
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Table 14.11.1: The truth table of the Walsh Transform kernel for width of registers k = 2.
The quantum array for the Walsh Butterfly for 2 variables (matrix 4 × 4) is shown in Figure 14.7.5.   
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Figure 14.11.5: The quantum array for the circuit specified in Table 14.11.1 emphasizes “quantum layout” of blocks.
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                           (a)                                                             (b)                                    

[image: image98.emf]
                                       (c)
Figure 14.11.6: The detailed design of the switching network for Walsh Transform from Figure 14.7.5.    (a) The symbolic switching, (b) symbolic switching rewritten to SWAP gates, (c)Quantum circuit  realization of the circuit from Figure 14.11.6b  using  CNOT gates.
There are many spectral transforms that are based only on addition and subtraction operations. These transforms include all the family of Fixed Polarity RM, GRM etc, but also the Arithmetic Transforms used in Artificial Intelligence [Falkowski03b] and the Adding transform used in Logic Design and Image Processing [Falkowski97].
The Kernel of the Adding Transform is shown in Figure 14.11.7a. Observe that the wires are of width k. This is the generalization of the PPRM Kernel from Chapter 3. A Butterfly circuit for the Adding Transform can be build similarly as for the Walsh (Hadamard ) Transform (see Figure 14.11.7 for more details).

Finally, let us find the inverse transform to the Adding Transform. For the Kernel we obtain the equation as in Figure 14.11.7c. Solving this equation we obtain the Kernel matrix from Figure 14.11.7d which is the same as the (redrawn) Kernel of the Arithmetic Transform, Figure 14.11.7e. The reversible butterfly for this transform can be build in the same way as we have done it for the Walsh and Adding Transforms. Observe that all these circuits are perfectly reversible without any ancilla bits.
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     (a)                                      (b)                                                          (c)                                               

[image: image101.emf]x = 1

y = 0

=

x y

z v x + z = 0

y + v = 1

z = -1

v = 1

1 0

-1 1

           
[image: image102.emf]A

-

B


                                         (d)                                                                              (e)
Figure 14.11.7: The reversible butterfly architectures for Adding and Arithmetic Spectral Transform. (a) The kernel of the Adding Transform, (b) The circuit for the kernel of the Adding Transform with k-bit words, (c) Matrix Equation to find the inverse Adding Transform, (d) solving the equation determines the matrix of the kernel that happens to be the kernel of the well-known Arithmetic Transform. (e) Realization of the kernel of the Arithmetic Transform with a single subtractor (it needs SWAP in quantum realization).
Observe that because Adding Transform is the inverse of Arithmetic Transform, the same circuit can be used for both, just by providing the data either at one end or the another. Again, this is not possible in classical CMOS or any known standard technology.

14.12.    Circuits for other Spectral Transforms

Other known transforms include Fourier Transform, Haar Transform and Hough Transform. There is much published on Quantum Fourier as it is the fundament of the Shor algorithm for quantum factoring. It is also much published on Haar Transform which is the simplest Quantum Wavelet. We did not find anything on Quantum Hough Transform but this subject is very complicated, so we will drop it here. However, we would like to show the reversibility of some operations that can be used to design various kinds of known and new spectral transforms. The general Kernel pattern for all Generalized Transforms  is presented in Figure 14.12.1.
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Figure 14.12.1: The Generalized Transform Kernel for Butterflies: (a) The schematic with 2 multipliers, an adder and a subtractor, (b) The quantum array on block level emphasizes hierarchical design with reversible blocks and the role of SWAP gates for quantum buses.
When coefficient c1  and c2 are constants, and operations +, - and * are done in a Galois Field algebra, then the generalized Kernel can also rewritten directly to a quantum array, as shown in Figure 14.12.1b. This result is not known from literature, although it is obvious. It is interesting what may be some practical applications of this fact. Using this design we can design a quantum oracle to find some certain transforms from the families of transforms; this would be a generalization of the paper by Lin, Thorton and Perkowski [Li06]. As seen, the generalized transform from Figure 14.12.1 is a generalization of both Kernels corresponding to positive Davio and negative Davio expansions from [Li06] and Chapter 12. Similar architectures have application in Adaptive Filtering for Image Processing and Array Signal Processing.
The circuit from Figure 14.12.1b can be redrawn to the circuit from Figure 14.12.2 by adding SWAP gates.
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Figure 14.12.2: Realization of the kernel block for the Generalized Transform Butterfly, (a) the location of qubit buses in the diagram, (b) Another variant of SWAPs for the circuit obtained from Figure 14.12.1b by removing SWAPs from the right. The left part shows symbolic SWAPs, the right part the rewritten diagram, allowing to map crossing connections to sequences of SWAP gates, similarly as it was done in Figure 14.7.6.   
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Figure 14.12.3: Reversible multiplier/divider and the derivation of its equations.
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Figure 14.12.4: Reversible power/logarithm circuit and the derivation of its equations.
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Figure 14.12.5: Reversible shift circuit and derivation of its equations.

Figures 14.12.3 – 14.12.5 present new reversible word-level blocks. They all generalize the principle of CNOT gate, used also in Figure 14.11.1b and Figure 14.7.7.   
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Figure 14.12.6:  Cyclic “Shifter To Right” circuit for 4 bits. (a) the quantum array with Fredkin gates, (b) its operation for control qubit a = 1, (c) its operation for control qubit a = 0.
Figure 14.12.6a  shows a reversible shifter that shifts to right in forward and shifts to left in backward (output (  input)  direction or operations.  Figure 14.12.6b illustrates its behavior for control a = 1. Figure 14.12.6c illustrates its transparent behavior for control a = 0. Figure 14.12.7 shows right/left cyclic shifter from inputs controlled by two inputs a  and  b.
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Figure 14.12.7: Left/right reversible cyclic shifter.
The operation of this general shifter is described with the following equations:
 a = 0, b = 0 or a = 1, b = 1 – no shift.

 a = 1, b = 0  Cyclic shift right.

 a = 0, b = 1 Cyclic shift left.

Similarly, all kinds of barrel shifters can be considered to create their reversible (quantum) counterparts.
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Figure 14.12.8: (a) The schematic of GF(8) adder realized in Binary, (b) The quantum array for GF(8) adder.
Finally, Figure 14.12.8 presents the simplicity of GF(k) adder for k = 2r and r = 3. Such circuits are used in DSP, communication and cryptography. 
14.13.    Low Level Realization of FPRM Transforms. FPRM Processor

The butterfly diagrams described in previous chapters for the “fast” calculation of the FPRM spectral coefficients may be represented as quantum logic circuits comprised of cascades of generalized Toffoli gates.  Furthermore, all possible butterfly diagrams for any given polarity may be described as a single quantum logic circuit with the polarity number provided as an input to the circuit.  Figure 14.13.1 contains the butterfly diagrams for all functions of one variable. The diagram on the left (Figure 14.13.1a) represents the polarity-0 transform while the diagram on the right (Figure 14.13.1b) represents the polarity-1 transform.  Values d1 and d2 represent binary truth vectors for all possible functions of 1-variable.  The right side of each butterfly expresses the RM spectral coefficients in terms of the original function values.  The quantum logic circuit (Figure 14.13.1c) is a realization of the composite function formed using the polarity value p to select which of the two sets of coefficients are requested as shown in the expressions on the right side of the quantum logic circuit.

Just as butterfly diagrams representing RM transforms of more than 1-variable can be formulated based on the Kronecker product, so can the quantum logic circuit also be expanded for larger functions.  Figure 14.13.2 depicts an expanded FPRM processor for 3-variable functions.
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Figure 14.13.1: RM Transformation Butterflies and Corresponding Quantum Logic Circuit. (a) the simple butterfly for polarity 0, (b) the simple butterfly for polarity 1, (c) the circuit for both polarities, polarity is selected by assigning a binary value to variable p.
The FPRM processor accepts a vector corresponding to the Boolean function and a polarity vector and outputs FPRM spectral coefficients. The core part of the FPRM processor is the “butterfly” quantum circuit. The polarity of the “butterfly” is controlled by the polarity bits. Figure 14.13.1 shows the 1-variable FPRM processor which has a 2-bit function input (
[image: image115.wmf]12
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dd

) and a 1-bit polarity input (p).  If
[image: image116.wmf]0

p

=

, the 2-bit output corresponds to positive polarity coefficients, otherwise, if p = 1 the 2-bit output corresponds to the negative polarity coefficients.

Figure 14.13.2 shows the 3-variable FPRM processor. There are 3 polarity bits and 8 input lines for 3-variable processor.  Again, we would like to point out that this diagram is only one example of many possible realizations of various polarity transforms that may be designed based on the “polarity controlled Kernel” concept that was outlined in this section.
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Figure 14.13.2: 3-variable FPRM Processor using butterfly of blocks from Figure 14.13.1.
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